CRISPR y coronavirus

Por Lluis Montoliu, el 3 abril, 2020. Categoría(s): diagnóstico genético • edición genética • genética ✎ 57
¿Que pueden aportar las herramientas de edición genética CRISPR en la investigación para detectar y derrotar al coronavirus SARS-CoV-2 causante de la COVID-19? Fotografía: Lluís Montoliu

Los que me hayáis escuchado alguna vez impartiendo una charla sobre CRISPR, o hayáis leído mi libro «Editando genes: recorta, pega y colorea. Las maravillosas herramientas CRISPR» (NextDoor Publishers, 2019) ya sabréis que una de las frases que más repito yo es: «la imaginación es el límite de las aplicaciones CRISPR«. Por eso no nos debería sorprender que el universo CRISPR también tenga algo que decir en la crisis actual sanitaria mundial causada por el coronavirus SARS-CoV-2, causante de la COVID-19.

En este artículo explicaré los dos grandes grupos de aplicaciones CRISPR para DIAGNOSTICAR y para COMBATIR el coronavirus.

Diagnóstico del coronavirus mediante CRISPR

La primera «aplicación» CRISPR para el nuevo coronavirus vino de la mano del laboratorio de Feng Zhang (BROAD-MIT, Boston, MS, USA), el inventor de la técnica de diagnóstico mediante CRISPR llamada SHERLOCK (nombre con evidente gancho y doble sentido, que es un acrónimo de las palabras en inglés Specific High-sensitivity Enzymatic Reporter unLOCKing), y que su laboratorio describió en 2017. El diagnóstico mediante CRISPR y la técnica SHERLOCK está ilustrado en la figura que encabeza este artículo. Esencialmente el protocolo se basa en una nueva proteína efectora Cas, que ya no es Cas9 sino que es Cas13a, de otra bacteria. La Cas13a tiene la capacidad de cortar ARN (y no ADN, como Cas9), y de activarse gracias a una pequeña guía de ARN específica que sea complementaria al ARN que se quiere cortar y degradar. El grupo de Feng Zhang encontró que al activarse in vitro (en el laboratorio) esta RNAsa (nucleasa que degrada el ARN) esta parecía volverse loca y acababa cortando y degradando no solamente el ARN complementario diana sino todos los ARN que hubiera en el ensayo. Este hallazgo, que hubiera sido interpretado como un gran fiasco por la mayoría de investigadores, despertó la perspicacia y el talento de Feng Zhang, y acabó convirtiendo un resultado negativo inesperado en una nueva aplicación para diagnosticar la presencia de moléculas de ADN (y ARN) presentes en ínfimas cantidades en una muestra.

Esquema que ilustra el protocolo de diagnóstico de ADN mediante CRISPR-Cas13a, diseñado por el equipo de Feng Zhang (BROAD-MIT, EE UU) y denominado SHERLOCK. El mismo protocolo puede aplicarse para detectar ARN (p.e. el genoma del coronavirus SARS-CoV-2) simplemente saltándose el primer paso. Esquema realizado por Lluís Montoliu. Esta figura aparece ilustrando uno de los capítulos del libro «Editando genes: recorta, pega y colorea. Las maravillosas herramientas CRISPR«, Lluís Montoliu, NextDoor Publishers 2019.

La idea magistral que se oculta tras SHERLOCLK es la adición de unas pequeñas moléculas de ARN (de color morado en la ilustración de cabecera) que tienen en uno de sus extremos una moléculas fluorescente (F) y en el otro extremo una molécula inhibidora de esa fluorescencia (N). Cuando las dos moléculas F y N están juntas no se emite fluorescencia. Tras activarse el corte del ARN diana por parte de la proteína Cas13a, gracias a una guía específica de ARN, complementaria al ARN a detectar, la Cas13a no solo corta ese ARN sino todos los presentes en la mezcla, incluyendo las pequeñas moléculas de ARN de color morado. Estas, al partirse, liberarán las moléculas F y N por separado y, entonces, la molécula F podrá brillar y mostrar su fluorescencia, siendo posible detectar este brillo de luz mediante detectores lumínicos específicos. Dado que la fluorescencia no aparece hasta que se inicie la degradación de los ARN y, dado que esta degradación no se inicia si no es en presencia del ARN complementario a la guía ARN específica, el sistema SHERLOCK representa un método muy específico y sensible (se estima su sensibilidad en el orden de attomolar, esto es detecta una molécula de ARN que esté diluida hasta una concentración de 10[exp -18] molar) para detectar un ADN (que debe ser convertido primero a ARN mediante una transcripción in vitro) o un ARN (que no necesita ese primer paso y puede aplicarse directamente).

Efectivamente, a principios de este año, y tras conocerse la secuencia del genoma ARN del coronavirus SARS-CoV-2, causante de la COVID-19, el laboratorio de Feng Zhang hizo público un protocolo de detección del coronavirus mediante SHERLOCK y compartió el protocolo y los detalles técnicos para llevarlo a cabo en una publicación abierta a todo el mundo. El protocolo es relativamente sencillo (si se tienen todos los reactivos, fácilmente obtenibles desde Addgene y otros proveedores) y puede completarse en apenas 1 hora. La sensibilidad del método permite detectar hasta 10-100 moléculas del genoma del coronavirus por microlitro (~20-200 aM) Como ellos mismos indican en su protocolo de detección, este no está todavía homologado ni autorizado para aplicarlo en el diagnóstico clínico del coronavirus (algo que tendrá que aprobar eventualmente la FDA, tras realizar las revisiones y análisis correspondientes), pero si puede usarse de forma experimental, en los laboratorios. La empresa creada por Zhang «Sherlock Biosciences» está desarrollando el kit de detección y esperando poder aplicar esta tecnología para realizar diagnósticos masivos del coronavirus SARS-CoV-2 mediante SHERLOCK.

Párrafo añadido el 5 de mayo de 2020: Feng Zhang acaba de hacer público un nuevo método de diagnóstico optimizado y simplificado, derivado de SHERLOCK, aplicable para detectar el coronavirus SARS-CoV-2 directamente, sin mediar extracción o aislamiento de ARN, que apenas requiere de 40-70 minutos para obtenerse el resultado, tras una incubación a 60 grados. El nuevo método ha recibido el nombre de STOPCovid y puede ser un nuevo revulsivo en el paisaje actual de técnicas diagnósticas rápidas para detectar el genoma del virus de formas mucho más rápidas y simples que mediante RT-PCR. El límite de detección de este método es de unas 100 copias del ARN del coronavirus por reacción. En STOPCovid los autores combinan la técnica LAMP (siglas de Amplificación Isotérmica mediada por lazos) con el uso de la variante CRISPR-Cas12b. Este trabajo está depositado en medRxiv.

Tras el sistema SHERLOCK aparecieron dos métodos mejorados de diagnóstico genético mediante CRISPR, desarrollados por los laboratorios de Feng Zhang (SHERLOCKv2) y Jennifer Doudna (DETECTR), como expliqué en una entrada previa de este blog.

A principios de 2018, el laboratorio de Jennifer Doudna (UC Berkeley, CA, USA), una de las pioneras de la revolución CRISPR y sus aplicaciones en edición genética, desarrolló un test de diagnóstico genético CRISPR análogo a SHERLOCK pero basado en otra proteína Cas con propiedades similares a Cas13a. En este caso se trataba de la proteína Cas12a y al método resultante lo bautizaron como DETECTR (nombre también con doble sentido y cuidadosamente elegido, que es un acrónimo de las palabras en inglés DNA Endonuclease TargEted CRISPR Trans Reporter). En paralelo, el laboratorio de Feng Zhang respondió combinando hasta cuatro proteínas Cas con actividades RNAsa (Cas13b de dos bacterias distintas, Cas13a y Cas12a) para detectar hasta cuatro moléculas de ADN (o ARN) distintas, en un desarrollo tecnológico que llamó naturalmente como SHERLOCKv2. En una entrada anterior de este blog comparé y expliqué en detalle los dos sistemas de diagnóstico basados en CRISPR: DETECTR y SHERLOCK.

Naturalmente el sistema DETECTR también puede aplicarse para detectar el coronavirus SARS-CoV-2. Han aparecido publicaciones que usan la proteína Cas12a para diagnosticar la presencia del coronavirus de forma rápida, sencilla y asequible. Alguno de estos métodos que usan la proteína Cas12a es capaz de detectar el virus HIV, causante del SIDA, y el coronavirus SARS-CoV-2, simultáneamente. La empresa fundada por Jennifer Doudna, Mammoth Biosciences, de igual forma que Sherlock Biosciences, también está desarrollando sistemas de detección del coronavirus basados en la tecnología DETECTR, que anuncian que pueden ser todavía más rápidos, simples y programables.

Párrafo añadido el 12 de octubre de 2020: Un equipo de investigadores japoneses también ha propuesto la utilización de la proteína CRISPR-Cas3 (de clase I, de la bacteria Escherichia coli) con una actividad y comportamiento inespecífico tras encontrar la secuencia complementaria similar a Cas12a, para detectar la presencia del coronavirus SARS-CoV-2, causante de la COVID-19. El acrónimo que proponen estos investigadores es CONAN (del inglés Cas3-Operated Nucleic Acid detectioN). Este trabajo fue depositado en el repositorio de preprints medRxiv.

Párrafo y tabla adjunta añadidos el 17 de abril de 2020: Ayer se publicó en la revista Nature Biotechnology el método que propone la empresa Mammoth Biosciences, basado en DETECTR, para detectar la presencia del virus SARS-CoV-2 mediante Cas12a. La tabla comparativa adjunta, que se incluye en este artículo, muestra las ventajas e inconvenientes de DETECR frente a la RT-PCR. En resumen, es más rápido (45 minutos por unas 3-4 horas) pero es menos sensible (10 copias del virus por microlitro frente a 1 copia del genoma viral que es capaz de detectar la RT-PCR). La diferencia adicional es que SHERLOCK puede procesar directamente la muestra del coronavirus (dado que Cas13a corta ARN) mientras que DETECTR necesita una etapa previa de retrotranscripción, de conversión de ARN a ADN, puesto que Cas12a corta ADN, no ARN. En ambos casos hay una fase de amplificación previa antes de cortar la secuencia problema.

Tabla comparativa de las características del nuevo sistema de diagnóstico de SARS-CoV-2 basado en DETECTR frente a la alternativa de referencia mediante RT-PCR. Tabla 1 del artículo Broughton, J.P., Deng, X., Yu, G. et al. CRISPR–Cas12-based detection of SARS-CoV-2. Nat Biotechnol (2020). https://doi.org/10.1038/s41587-020-0513-4

 

Párrafo añadido el 12 de octubre de 2020: La investigadora Jennifer Doudna, junto a otros colaboradores, ha depositado en medRxiv un manuscrito con un nuevo método de diagnóstico genético de la COVID-19, para detectar la presencia del coronavirus SARS-CoV-2, basado en la proteína Cas13a que no requiere amplificación previa y que detecta la fluorescencia de moléculas de ARN indicadoras al añadir directamente una guía ARN complementaria a uno de los genes del virus. Con una sola guía el método consigue detectar hasta 100.000 copias del virus/microlitro, lo cual es una carga viral importante, y por lo tanto el método no sería muy sensible. Sin embargo, combinando el uso de dos guías ARN se consigue llegar a 100 copias del virus/microlitro, lo cual es una sensibilidad similar a los otros métodos basados en Sherlock y Detectr, que sí tienen su fase de amplificación. La diferencia en este caso es que la respuesta se obtiene en 5 minutos. Esta es la novedad y la innovación de este nuevo método, que puede revolucionar la detección del coronavirus en múltiples sitios, sin requerir equipamiento sofisticado. De momento no está aprobado por la FDA. Esta agencia reguladora ya aprobó, de emergencia, el sistema Sherlock el pasado 6 de mayo.

De cualquier manera, estos métodos innovadores de diagnóstico de la presencia del genoma ARN del coronavirus mediante SHERLOCK o DETECTR respresentan la punta de lanza biotecnológica de los diagnósticos genéticos basados en CRISPR, y seguramente serán la respuesta que necesitamos para poder detectar este virus de forma masiva, rápida y sencilla. Por el momento, en un listado en el que aparecen la mayoría de test de diagnóstico de SARS-CoV-2 comerciales o en desarrollo solo se menciona un kit de diagnóstico, en desarrollo, basado en la tecnología CRISPR.

Normalmente las herramientas CRISPR de edición genética son capaces de editar ADN. Esta es su aplicación más común y se la conoce con el nombre de aplicaciones CRISPR 1.0. Sin embargo algunas variantes de las herramientas CRISPR pueden también editar ARN, y son conocidas como las aplicaciones CRISPR 2.0. La figura representa un ejemplo de cada tipo. Esquema realizado por Lluís Montoliu. Esta figura aparece ilustrando uno de los capítulos del libro «Editando genes: recorta, pega y colorea. Las maravillosas herramientas CRISPR«, Lluís Montoliu, NextDoor Publishers 2019.

Combatir al coronavirus mediante CRISPR

Generalmente todos tenemos en mente que las herramientas CRISPR son capaces de editar cualquier secuencia de ADN. Y esto es cierto. Las variantes más comunmente utilizadas (CRISPR-Cas9) cortan y promueven la edición de ADN. Son las llamadas herramientas CRISPR 1.0. Adicionalmente, como he explicado en el apartado anterior, existen diversas proteínas Cas con capacidad de cortar ARN de forma específica. Algunas de ellas, como la Cas13b, han sido modificadas en el laboratorio, eliminando su capacidad de corte y combinándolas con actividades desaminasas que son capaces de cambiar directamente, químicamente, algún ribonucleótido específico (alguna letra concreta del ARN, la A por la G, o la C por la U), permitiendo la edición directa del ARN, lo que se ha venido a llamar las herramientas de edición CRISPR 2.0, como están ilustradas en la figura anterior. Estas herramientas (de las que existen diversas modalidades ya disponibles) podrían usarse, por ejemplo, para alterar la secuencia del genoma ARN del coronavirus SARS-CoV-2 mutando aquellos genes que le confieren la virulencia y, por ello, convirtiéndose en herramientas CRISPR para combatir la infección del coronavirus.

Sin embargo, una forma todavía más efectiva de combatir al coronavirus SARS-CoV-2 mediante CRISPR es precisamente usando la capacidad que tienen algunas de estas proteínas Cas13 para cortar, degradar y destruir moléculas de ARN específicas. En particular usando la proteína Cas13d, con actividad RNAsa específica, guiada por una pequeña molécula de RNA.

Uso de la proteína CRISPR-Cas13d incluida dentro de AAV, junto a guías de ARN específicas, para combatir el genoma ARN del coronavirus SARS-CoV-2 rompiendo la molécula de ARN del virus en diferentes partes y promoviendo con ello su degradación. Figura modificada de la publicación Nguyen et al. Cell Research (2020).

En febrero de este año apareció publicado en la revista Cell Research un artículo, lanzado desde la Facultad de Medicina de Harvard, en EE.UU., que postulaba un diseño terapéutico basado en Cas13d para combatir el coronavirus mediante CRISPR. Los autores de la propuesta habían localizado múltiples dianas para usar como complementarias a las guías ARN de la proteína Cas13d en el genoma del coronavirus SARS-CoV-2. Su propuesta incluía introducir dentro de partículas virales AAV (virus adeno-asociados, muy utilizados en terapia génica) el gen que codifica la proteína Cas13d y un bloque de expresión de tres guías de ARN que usaría la Cas13d para cortar el genoma del coronavirus. El AAV recombinante resultante podría administrarse por vía aérea, para que llegará fácilmente a los pulmones, entrara en las células cargadas de coronavirus y los destruyera. En teoría. Ahora falta demostrar en la práctica toda esta propuesta, de momento lanzada como una propuesta interesante, innovadora, pero teórica, todavía en desarrollo.

Otro estudio, este sí ya completado experimentalmente, desarrollado en la costa oeste de EE.UU., en la Universidad de Stanford, acaba de ser depositado en el servidor de pre-prints bioRxiv, el pasado 14 de marzo de 2020, y en él los investigadores también usan la estrategia de Cas13d para combatir a diferentes virus RNA. En este trabajo los autores prepararon una línea de células humanas epiteliales de pulmón a las que previamente transformaron con una construcción génica para que produjeran constantemente proteína Cas13d y un marcador fluorescente. Posteriormente estas células las transfectaban con nuevas construcciones capaces de producir las guías RNA que necesita la proteína Cas13d para cortar el ARN en posiciones específicas y exponían las células o bien a construcciones que simulan la infección con el coronavirus SARS-CoV-2 o a virus de la gripe (IAV), que también tiene moléculas de ARN en su genoma. En ambos casos tuvieron éxito, consiguiendo una degradación de las secuencias del ARN del SARS-CoV-2 y una inhibición en la replicación del virus de la gripe. Los autores bautizaron su método con el no menos ingenioso nombre de PAC-MAN (acrónimo de las palabras en inglés Prophylactic Antiviral CRISPR in huMAN cells). Los autores realizaron un análisis comparativo de los genomas de todos los coronavirus humanos conocidos y llegaron a encontrar seis moléculas de ARN que pueden actuar como guía para la proteína Cas13d, capaces de aparearse con secuencias comunes a todos los coronavirus conocidos que nos infectan a los seres humanos, lo cual, de poder verificarse, representaría una arma antiviral profiláctica y terapéutica extraordinariamente vesátil y poderosa, basada en herramientas CRISPR. El trabajo se publicó finalmente en la revista Cell.

Aunque sabemos poco de las nuevas versiones CRISPR, de estas proteínas Cas13d, ya sabemos que pueden funcionar también bien in vivo, en animales. Miguel Ángel Moreno Mateos, investigador Ramón y Cajal de la Universidad Pablo de Olavide, en el Centro Andaluz de Biología del Desarrollo (CABD) en Sevilla, ha demostrado, en un estudio reciente, depositado en bioRxiv el 14 de enero de 2020, que este sistema CRISPR-Cas13d funciona para reducir la expresión de genes específicos en embriones de pez cebra, de pez medaka, de pez killi y de ratón. Unos datos muy interesantes que permiten albergar esperanzas para su futuro uso en animales adultos y, eventualmente, si todos los análisis previos fueran exitosos, en personas. El trabajo se publicó finalmente en la revista Developmental Cell.

Las herramientas CRISPR no dejan de sorprendernos. Han aparecido en los laboratorios, apenas hace siete años, y han venido para quedarse. Y la imaginación desbordante y sin límites de los investigadores hace el resto. ¡Larga vida a las CRISPR! ¡Mucho éxito diagnosticando y combatiendo a los coronavirus!

Este artículo ha sido actualizado tres veces: el 17 de abril de 2020, el 5 de mayo de 2020 y el 12 de octubre de 2020.



57 Comentarios

  1. La mayoria de conceptos se me hacen aun complicados y desconocidos pero su manera de escribir y los datos hacen de este conocimiento muy atractivo sumado a los acronimos.

    1. Hola Lluis, en primer lugar, enhorabuena por el excelente artículo.
      ¿Conoces si es posible la edición de material genético viral con técnicas CRISPR? Porque estás funcionan en células eucariotas debido a mecanismos de reparación, ¿pero en virus? Solo el posible mediante otros mecanismos como recombinación o mutagénesis, ¿verdad?

      ¡Un saludo!

      1. Gracias Alejandro, el virus se aprovecha de la maquinaria celular para realizar gran parte de su ciclo de replicación. Por lo tanto, sobre el papel, sería posible realizar edición del genoma de virus para aquellos virus que llegan al núcleo (no es el caso del coronavirus, que se queda en el citoplasma). Es en el núcleo donde están las proteínas de reparación, no en el citoplasma. Saludos

        1. ¡Buenos días, Dr. Montoliu! 24-11-2021

          El Sars Cov2 al ser un Virus ARN monocatenario positivo (o sea semejante al ARNmensajero de los seres vivos) en el citoplasma es «atacable» el genoma viral por el Crispr-Cas13d (PAC-MAN) para «cortar» ese ARN a la altura de su RnRP (Replicasa) ¿no?

          Si se corta en esa zona de su ARN viral (RdRP) y no es capaz de «auto repararse» entonces ese ARN viral se degradaría ¿no?

          Para entregar ese anti-viral se podría usar la tecnología «Vacuna ARNm» para crear el fármaco ¿no?

          Creo que lo llamaba Lab. Moderna hace unos años en TedX la tecnoogía «Terapia ARNm»

          Aunque quizá para los enfermos de Covid-19 sería mejor que ser administrado vía nasal por un nebulizador o un spray/aerosol como los fármacos de las alergias/asmas/EPOC/…¿no?

          Un gran saludo y gracias por su tiempo Dr. Montoliu

          1. Efectivamente, estas son las diversas estrategias que se están explorando para transformar la tecnología CRISPR en una terapia antiviral contra el coronavirus.

  2. Sin duda un artículo muy interesante, las posibilidades del CRISPR son espectaculares, sin duda. Veremos si es posible afrontar la crisis sanitaria mundial CoVid-19 con la ayuda de la herramienta CRISPR. Sería algo grande de ver y un «paso» más hacia la futuro. Gracias por el artículo Sr. Montoliu. Un saludo

        1. Explicación de técnicas muy alentadoras en esta enfermedad, pero, más por los futuros virus mutados que se pueden presentar en un futuro «cercano», agradecer al cuerpo de investigadores.

  3. Enhorabuena por sus estupendos artículos, tan amenos, bien explicados, e interesantes. Una suerte poder leerlos para comprender mejor esta tecnología.

  4. Me he quedado sorprendida, estudio biotecnología y me han dado ganas de conocer más sobre CRISPR. ¡Larga vida a las CRISPR! Por cierto muchas gracias por divulgar tanto conocimiento de manera sencilla y clara.

  5. Magistral, como siempre Lluís. Muchas gracias por explicar cualquier artículo o técnica siempre tan bien y tan fácil en todo tipo de foros.

  6. Muy interesante! La verdad es que CRISPR tiene muchas más aplicaciones que aún se tienen que explotar, aparte de la edición genómica.

  7. Muchas gracias de nuevo Lluís!

    Puedo consultarte un par de dudas? He visto también tu video sobre el tema, que me ha traído hasta este artículo, y se me plantean dos cosas:
    1. Esta es para confirmar. Por lo que explicas entiendo que con el sistema CRISPR (cualquiera de ellos) lo que podemos es detectar el virus, pero no cuantificar la carga viral, es así?
    2. Se está hablando de la aplicación de CRISPR para tratar otras enfermedades que no sean por Coronavirus, por ejemplo el SIDA?

    Gracias de antemano 🙂

  8. Soy oncologo clínico en Salta, Argentina.
    Estudiando en este momento posibles aplicaciones tanto profilácticas como terapéuticas de CRISPR del extremófilo Thermus aq., aislado de aguas hipertermales de nuestra provincia, contra COVID.
    Luis Montoliu claramente nos actualiza sobre el presente y futuro del mayor descubrimiento de lo que va del siglo XXI. CRISPR.
    Gracias. José Ovejero Solá, médico. MN 62927

  9. Enhorabuena por el excelente artículo!
    Soy un gran admiradora de la herramienta CRISPR y estoy convencida de que tendrá mucho que decir en la actual crisis sanitaria.
    Muchas gracias por compartir su gran conocimiento en la materia de forma tan didáctica e interesante.
    Un cordial saludo.

  10. hola
    mucho es muy interesante en todo esto.
    pero, no hay riesgos en cas9- 12 etc?
    debemos tomar riesgos con bacterias » benéficas»?
    covid19 es débil fuera de cuerpos…
    una cadena de proteínas y ácidos ribonucleicos sin ninguna vida. (¿producir para destruir?)
    con el sarampión funcionaron las vacunas, para los que murieron, fue tarde.
    sin dudas CRISPR es un descubrimiento genial ! Ahora, también, hay juegos, que se juegan sin comodines.
    es prudente controlar la ansiedad
    agradezco todos los esfuerzos !

  11. ¡Muchas gracias por su explicación! Es muy claro en su descripción, emplea un lenguaje ameno pero sin perder el rigor del lenguaje especializado. ¡Fascinante CRISPR!

  12. Pues en el I congreso Covid19 de España, se hablo de esta técnica, CRISPR por lo que supondra. Mas rápida que la PCR y más barata, que para un médico en el tiraje es crucial ya que el tiempo es un punto critico importante en la atención de los pacientes que llegan a urgencias. Gracias nuevamente Lluis.

  13. Buenas noches, tengo un par de preguntas, la retrotranscripcion es necesaria en todos los métodos CRISPR-Cas?, hay algún método diagnostico que no requiera retrotranscripcion y amplificación del genoma viral? En caso de que exista como funciona este método y que proteínas o enzimas utiliza?

    1. Hola Laura, la retrotranscripción solo es necesaria si vas a utilizar Cas12a o Cas12b, que cortan ADN, y que, por lo tanto, si quieres diagnosticar la presencia del coronavirus, cuyo genoma es un ARN, primero debes pasarlo a ADN y luego amplificarlo con alguna técnica isotérmica LAMP. Por el contrario, para las Cas13a y Cas13b, que cortan directamente ARN, no es necesario retrotranscribir nada.

  14. Doctor Montoliu en primer lugar quiero felicitarlo por su libro y por este blog
    Quisiera preguntarle acerca de la posibilidad de la infección del coronavirus a una bacteria para la detección del fragmento que esta eventualmente pueda guardar para su defensa

Deja un comentario

Este sitio usa Akismet para reducir el spam. Aprende cómo se procesan los datos de tus comentarios.